29 minute read

개요

  • SVM은 널리 사용되는 머신러닝 기법 중 하나로 우리가 사랑하는 Scikit learn 라이브러리에서 사용 가능하다.
  • 기본적인 분석은 Scikit learn에서 충분히 가능하지만 더 자세한 분석을 위해서 SVM의 구조를 코딩할 줄 알아야한다.
  • SVM의 기본적인 구조를 Python을 이용해서 코딩하였다.

SVM이란?

  • SVM은 두 개의 범주를 분류하는 기법 중 하나이다. 기본적으로 선형으로 분류하지만, kernel trick을 활용하여 비선형 분류도 어느정도 가능하다. img
  • SVM은 산업공학적인 기법이 들어간 머신러닝 기법이다. 데이터 집합을 분리하는 초평면을 정하고, 해당 초평면과 가장 가까운 데이터 2개를 선정(Support Vector)하여 다음과 같이 나타낼 수 있다. w는 초평면의 법선 벡터이다. \mathbf{w}\cdot\mathbf{x} - b=+1\, \mathbf{w}\cdot\mathbf{x} - b=-1\,
  • +1과 -1은 우리가 임의로 target variable을 분류하기 위해 라벨을 붙인 것이다. 위 두 식은 각각 초평면을 의미한다.

  • 위의 식을 연립하여 두 초평면 사이의 거리를 구하면 \tfrac{2}{|\mathbf{w}|}이 나온다. 해당 거리를 마진이라고 부르며, 이 마진을 최대화하는 것이 우리의 목적이다.
  • 해당 식은 y_i(\mathbf{w}\cdot\mathbf{x}_i - b) \ge 1,\text{ for all } 1 \le i \le n.의 Constraints를 지니고 있으며 결국 \arg\min_{(\mathbf{w},b)}|\mathbf{w}|
  • 단, y_i(\mathbf{w}\cdot\mathbf{x}_i - b) \ge 1,\text{ for all } 1 \le i \le n. 와 같은 최적화 문제로 표현할 수 있다.

  • 위 문제의 w의 norm은 제곱근을 포함하고 있기 때문에 계산상의 편의를 위해 \tfrac{1}{2}|\mathbf{w}|^2로 대체하면 Quadratic Programming 최적화 문제가 된다.
  • 라그랑주 승수법을 이용하면 위의 문제는 Saddle Point를 찾는 문제가 되는데 식은 다음과 같이 된다.\arg\min_{\mathbf{w},b } \max_{\boldsymbol{\alpha}\geq 0 } \left{ \frac{1}{2}|\mathbf{w}|^2 - \sum_{i=1}^{n}{\alpha_i[y_i(\mathbf{w}\cdot \mathbf{x_i} - b)-1]} \right}
  • 여기서 알파는 Lagrangian multiplier로 Original Problem을 Lagrangian Primal로 변환시켜주는 변수이다. 모든 알파는 0보다 크거나 같다.
  • KKT 조건에 따라 y_i(\mathbf{w}\cdot\mathbf{x_i} - b) - 1 > 0 를 만족하는 모든 점들에 대응하는 알파값들은 0이 되기 때문에 결국 다음을 만족하는 support vector들만이 영향을 끼치게 된다. y_i(\mathbf{w}\cdot\mathbf{x_i} - b) = 1
  • 이 식에서 우린 \mathbf{w}\cdot\mathbf{x_i} - b = \frac{1}{y_i} = y_i \iff b = \mathbf{w}\cdot\mathbf{x_i} - y_i를 알 수 있고, 결국 b는 y와 x에 의존하는 변수이다. support vector 중에서 b가 가장 작은 x,y를 고르는 것이다.

코드 구현

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

data_ = pd.read_csv('D:/정석-한양대/4학년 2학기/응용데이터애널리틱스/creditcard_dataset.csv', encoding = 'cp949', index_col = 0)
columns_ = data_.columns
data_.head()
Time V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V21 V22 V23 V24 V25 V26 V27 V28 Amount Class
190368 128803 -2.272473 2.935226 -4.871394 2.419012 -1.513022 -0.480625 -2.126136 1.883507 -1.297262 ... 0.718504 0.893850 -0.031632 0.322913 -0.058406 -0.411649 0.573803 0.176067 175.90 1
9179 13126 -2.880042 5.225442 -11.063330 6.689951 -5.759924 -2.244031 -11.199975 4.014722 -3.429304 ... 2.002883 0.351102 0.795255 -0.778379 -1.646815 0.487539 1.427713 0.583172 1.00 1
42700 41204 -8.440284 6.147653 -11.683706 6.702780 -8.155839 -3.716264 -12.407313 5.626571 -6.232161 ... 2.192855 -0.282597 0.008068 0.403858 -0.018788 0.522722 0.792691 0.067790 30.26 1
239501 150139 -6.682832 -2.714268 -5.774530 1.449792 -0.661836 -1.148650 0.849686 0.433427 -1.315646 ... 0.220526 1.187013 0.335821 0.215683 0.803110 0.044033 -0.054988 0.082337 237.26 1
154286 101051 -1.465316 -1.093377 -0.059768 1.064785 11.095089 -5.430971 -9.378025 -0.446456 1.992110 ... 1.160623 -1.259697 -15.981649 -0.883670 -3.536716 -0.592965 0.675525 0.424849 0.92 1

5 rows × 31 columns

Kernel Function

  • SVM은 어떤 커널을 사용하느냐에 따라 다양한 분석이 가능해진다.
  • SVM은 기본적으로 선형 분류만 가능하지만, 데이터의 차원을 높여서 비선형 분류가 가능하게끔 하는 것이 Kernel trick이다. img |\mathbf{w}|^2 = \mathbf{w}^T\cdot \mathbf{w}에서 \mathbf{w} = \sum_{i=1}^n{\alpha_i y_i\mathbf{x_i}}로 치환하면 쌍대형식의 최적화 문제로 바뀐다. \tilde{L}(\mathbf{\alpha})=\sum_{i=1}^n \alpha_i - \frac{1}{2}\sum_{i, j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j=\sum_{i=1}^n \alpha_i - \frac{1}{2}\sum_{i, j} \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)를 최대화하는 문제이다.
  • 단, \alpha_i \geq 0, ~~~\sum_{i=1}^n \alpha_i y_i = 0, ~~~\text{ for all } 1 \le i \le n.의 Constraint를 갖느다. 이때 제약조건은 b를 최소화하는 과정에서 생기는 조건이다.
  • 위 식에서는 kernel을 k(\mathbf{x}_i,\mathbf{x}_j)=\mathbf{x}_i\cdot\mathbf{x}_j로 정의하여 \mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i.의 식이 얻어진다.
  • 이를 통해 우리는 kernel이 어떤 의미를 가지는데 대충 알 수 있다.
  • 이번 구현에서는 linear kernel과 rbf kernel을 구현해볼 것이다.
def Kernel_(x, y, params = 0, type_ = 'linear'):
    if type_ == 'rbf' :
        Kernel = np.exp(- (np.sum(x **2, axis = 1).reshape(-1,1) + np.sum(y **2, axis = 1).reshape(1,-1) - 2 * x @ y.T)* params)
        return Kernel
        
    elif type_ == 'linear':
        Kernel = x @ y.T
        return Kernel 

Cvxopt solver를 이용해서 SVM의 쌍대문제를 풀고 알파와 w, b를 구한다.

  • P, q, G, h, A, b는 모두 minimize문제에 맞춰진 계수들이다 즉 , soft-margin의 듀얼식은 max문제인데 이에 목적식에 -1을 곱하여 minimize문제를 만들어준다. 그리하여 원래 soft margin식과는 목적식의 부호가 다른 것을 알 수 있다.

  • P : max 듀얼 문제의 alpha에 대한 목적식 중 2차항에 해당되는 계수에 -1을 곱한 것을 계수들을 matrix시킨 것을 의미한다.=> 여기서는 minimize(primal)문제로 해석하여 식을 푼다

  • q : max 듀얼 문제의 alpha에 대한 목적식 중 1차항에 해당되는 계수에 -1을 곱한 계수들의 vector를 의미한다. => 여기서는 minimize(primal)문제로 해석하여 식을 푼다

  • G : 듀얼문제에 constraint에서 alpha에 대한 부등식에서 alpha에 대한 계수를 가진 Matix를 의미한다. 여기서는 0보다 크거나 같다에 대응되는 식에는 -를 곱해주어 부등호 방향을 맞추어준다. C보다 작거나 같다는 그대로 계수가 1이 된다.

  • h : 듀얼문제에 constraint에서 alpha에 대한 부등식에서 우변에 존재하는 상수항들의 vector를 의미한다. 0과 C가 있다.

  • A : 듀얼문제에 constraint에서 alpha에 대한 등식에서 alpha에 대한 계수(여기서는 y에 해당)vector를 의미한다.

  • b :듀얼문제에 constraint에서 alpha에 대한 등식에서 우변에 존재하는 상수항들의 vector를 의미한다.(여기서는 다 0)

  • 우린 Hard Margin model이 아니라 Soft margin model을 만들 것이다.

  • C는 soft margin에서 어느정도만큼 틀리는 것을 봐줄 것인가를 결정하는 하이퍼 파라미터이다. c가 커질 수록 잘못 판별한 데이터의 영향력이 커지므로 적당한 c는 과적합을 방지할 수 있다.

\arg\min_{\mathbf{w},\mathbf{\xi}, b } \left{\frac{1}{2} |\mathbf{w}|^2 + C \sum_{i=1}^n \xi_i \right}

  • 위 식과 같이 C가 커질 수록 크사이(slack variable)의 영향력이 커진다. 많이 봐주고 싶으면 c를 줄이는 것이 좋다.

Linear Kernel

from cvxopt import matrix as cvxopt_matrix
from cvxopt import solvers as cvxopt_solvers

def Convolution(pred, real) :
    pred = np.array(pred)
    y = np.array(real)
    TP = np.sum((pred == 1) & (y == 1))
    FP = np.sum((pred == 1) & (y != 1))
    FN = np.sum((pred != 1) & (y == 1))
    TN = np.sum((pred != 1) & (y != 1))
    return TP, FP, FN, TN
    
def precision_recall(X) :
  TP,FP,FN,TN = X
  return TP / (TP + FP), TP / (TP + FN)

def Minmax_(X) :
    X = np.array(X)
    return (X - X.min(axis = 0)) / (X.max(axis= 0) - X.min(axis = 0)), X.max(axis =0) , X.min(axis =0)

def Standar_(X) :
    X = np.array(X)
    return (X - X.mean(axis =0)) / X.std(axis = 0), X.mean(axis =0), X.std(axis = 0)

C = 10  # 여기 C는 hyperparameter이므로 변형 가능함 (이번에는 10으로 고정하고 진행)
X = Standar_(np.array(data_[columns_[:-1]]))[0]
y = np.array(data_[columns_[-1]])* 1.

y = y.reshape(-1,1) 
m,n = X.shape

H = Kernel_(X, X) * 1.
H *= y@y.T

P = cvxopt_matrix(H)
q = cvxopt_matrix(-np.ones((m, 1)))
G = cvxopt_matrix(np.vstack((-np.eye(m),np.eye(m))))
h = cvxopt_matrix(np.hstack((np.zeros(m), np.ones(m) * C)))
A = cvxopt_matrix(y.reshape(1, -1))
b = cvxopt_matrix(np.zeros(1))

#Run solver
sol = cvxopt_solvers.qp(P, q, G, h, A, b)
alphas = np.array(sol['x'])
     pcost       dcost       gap    pres   dres
 0: -5.8129e+02 -1.0298e+05  4e+05  1e+00  2e-12
 1: -4.2201e+02 -5.1005e+04  1e+05  3e-01  1e-12
 2: -2.6726e+02 -2.0455e+04  4e+04  9e-02  6e-13
 3: -1.8589e+02 -1.0262e+04  2e+04  4e-02  4e-13
 4: -9.6012e+01 -5.7119e+03  8e+03  1e-02  3e-13
 5: -8.7623e+01 -2.4313e+03  3e+03  4e-03  3e-13
 6: -1.3650e+02 -1.2150e+03  1e+03  1e-03  3e-13
 7: -1.7550e+02 -6.5484e+02  5e+02  3e-04  3e-13
 8: -1.9086e+02 -5.3416e+02  3e+02  1e-04  3e-13
 9: -2.0543e+02 -4.3445e+02  2e+02  5e-05  3e-13
10: -2.1462e+02 -4.0309e+02  2e+02  3e-05  3e-13
11: -2.2073e+02 -3.7532e+02  2e+02  2e-05  3e-13
12: -2.3983e+02 -3.3847e+02  1e+02  5e-06  3e-13
13: -2.4876e+02 -3.1464e+02  7e+01  3e-06  3e-13
14: -2.4776e+02 -3.1241e+02  6e+01  2e-06  3e-13
15: -2.5088e+02 -3.0203e+02  5e+01  2e-06  4e-13
16: -2.5455e+02 -2.9130e+02  4e+01  9e-07  3e-13
17: -2.5610e+02 -2.8591e+02  3e+01  6e-07  3e-13
18: -2.6030e+02 -2.7701e+02  2e+01  1e-07  4e-13
19: -2.6374e+02 -2.7136e+02  8e+00  5e-08  4e-13
20: -2.6524e+02 -2.6894e+02  4e+00  1e-08  4e-13
21: -2.6632e+02 -2.6743e+02  1e+00  4e-09  4e-13
22: -2.6662e+02 -2.6697e+02  4e-01  6e-14  5e-13
23: -2.6679e+02 -2.6680e+02  8e-03  2e-13  5e-13
24: -2.6679e+02 -2.6679e+02  8e-05  8e-14  5e-13
Optimal solution found.
w = ((y * alphas).T @ X).reshape(-1,1)
S = ((alphas > 1e-4) & (alphas < C-1e-4)).flatten()
b = y[S] - np.sum(Kernel_(X, X[S], type_ = 'linear')* y * alphas , axis = 0).reshape(-1,1)

print('Alphas = ',alphas[(alphas > 1e-4) & (alphas < C-1e-4)])
print('')
print('w = ', w.flatten())
print('')
print('b = ', np.mean(b))
print('')
print("support vector : ", np.array(range(m))[S])
Alphas =  [0.93391225 0.7316745  9.0780053  9.43345925 0.20215315 4.75997642
 0.04898054 0.9437629  1.86790277 0.47439455 3.11719321 4.15402803
 0.69513099 6.68553404 2.71619509 0.50311192 3.00745528 0.39546727
 7.15310875 9.09066704 7.95663185 3.62974155 5.19419471 1.73525479
 7.67969285 1.70451727 0.97884377 3.32793679 1.40845885 1.15099822]

w =  [-0.16485571  1.51871314 -0.04860628  0.70754103  1.1347836   0.91858636
 -0.4016664  -1.39914304 -0.99450461 -1.44138493 -2.46660065  0.33934072
 -1.34516894 -0.15421702 -1.75442775 -0.11663225 -0.85224685 -1.15180703
 -0.59394569  0.02060395 -1.26201162  0.11997614  0.12094323  0.17223573
  0.1805074  -0.24004217 -0.3830853  -1.02168134  0.42591415  1.06549357]

b =  -1.1870552539320571

support vector :  [  4  23  48  65  96 120 143 146 283 295 310 313 318 339 352 445 462 470
 516 538 565 610 659 671 743 748 757 826 836 870]

Scikit learn의 모델과 비교해보기

from sklearn.svm import SVC

clf = SVC(C=10, kernel = 'linear', tol = 1e-5)
clf.fit(X, y.ravel())

print('Coefficients of the support vector in the decision function = ')
print(np.abs(clf.dual_coef_))
print('')
print('w = ',clf.coef_)
print('')
print('b = ',clf.intercept_)
print('')
print('support vector = ', clf.support_)
Coefficients of the support vector in the decision function = 
[[ 4.76005618  0.04895032  0.94363719  1.86780052  0.47456087  3.11693822
   4.1543475   0.69503632 10.          6.68541497  2.71612563 10.
   0.50264113  3.00726877  0.39548227  7.15298708  9.09077709  7.95706495
  10.          3.63026574  5.19409721  1.73514001 10.          7.67990269
   1.70454615  0.97827602  3.32858113  1.40848044 10.          1.15113005
  10.          0.93389797 10.         10.          0.73152197 10.
  10.         10.         10.         10.         10.         10.
   9.0780111  10.         10.          9.43391843  0.20215899 10.        ]]

w =  [[-0.16486255  1.51878818 -0.04858365  0.70753321  1.13475239  0.918642
  -0.40165619 -1.39919131 -0.99447832 -1.44142707 -2.46657961  0.33933682
  -1.34522546 -0.15421286 -1.75447871 -0.11663618 -0.85227882 -1.15186411
  -0.59393017  0.02060847 -1.26206137  0.11998512  0.12095547  0.17224891
   0.18051361 -0.24005502 -0.38307938 -1.02168697  0.42592808  1.06555549]]

b =  [-1.18702913]

support vector =  [120 143 146 283 295 310 313 318 325 339 352 406 445 462 470 516 538 565
 585 610 659 671 721 743 748 757 826 836 856 870 894   4  12  18  23  29
  31  32  33  39  42  45  48  52  64  65  96  98]
pred_sol = np.sign(np.sum(Kernel_(X, X  ,type_ = 'linear')* y * alphas , axis = 0).reshape(-1,1) + b[0])

np.sum(clf.predict(X) - pred_sol.flatten())
0.0
  • 차이가 전혀 없다!

해당 모델의 Performance 확인

precision_recall(Convolution(pred_sol,y))
(0.9891304347826086, 0.91)

RBF Kernel

from cvxopt import matrix as cvxopt_matrix
from cvxopt import solvers as cvxopt_solvers

def Convolution(pred, real) :
    pred = np.array(pred)
    y = np.array(real)
    TP = np.sum((pred == 1) & (y == 1))
    FP = np.sum((pred == 1) & (y != 1))
    FN = np.sum((pred != 1) & (y == 1))
    TN = np.sum((pred != 1) & (y != 1))
    return TP, FP, FN, TN
    
def precision_recall(X) :
  TP,FP,FN,TN = X
  return TP / (TP + FP), TP / (TP + FN)

def Minmax_(X) :
    X = np.array(X)
    return (X - X.min(axis = 0)) / (X.max(axis= 0) - X.min(axis = 0)), X.max(axis =0) , X.min(axis =0)

def Standar_(X) :
    X = np.array(X)
    return (X - X.mean(axis =0)) / X.std(axis = 0), X.mean(axis =0), X.std(axis = 0)

C = 10  # 여기 C는 hyperparameter이므로 변형 가능함 (이번에는 10으로 고정하고 진행)
X = Standar_(np.array(data_[columns_[:-1]]))[0]
y = np.array(data_[columns_[-1]])* 1.

y = y.reshape(-1,1) 
m,n = X.shape

def Kernel_(x, y, params = 2, type_ = 'rbf') :

    if type_ == 'rbf' :
      Kernel = np.exp(- (np.sum(x **2, axis = 1).reshape(-1,1) + np.sum(y **2, axis = 1).reshape(1,-1) - 2 * x @ y.T)* params)
      return Kernel
    
    elif type_ == 'linear':
      Kernel = x @ y.T
      return Kernel

H = Kernel_(X, X) * 1.
H *= y@y.T

P = cvxopt_matrix(H) 
q = cvxopt_matrix(-np.ones((m, 1)))
G = cvxopt_matrix(np.vstack((-np.eye(m),np.eye(m))))
h = cvxopt_matrix(np.hstack((np.zeros(m), np.ones(m) * C)))
A = cvxopt_matrix(y.reshape(1, -1))
b = cvxopt_matrix(np.zeros(1))

sol = cvxopt_solvers.qp(P, q, G, h, A, b)
alphas = np.array(sol['x'])

#Results

w = ((y * alphas).T @ X).reshape(-1,1)
S = ((alphas > 1e-4) & (alphas < C-1e-4)).flatten()
b = y[S] - np.sum(Kernel_(X, X[S], type_ = 'rbf')* y * alphas , axis = 0).reshape(-1,1)

print('Alphas = ',alphas[(alphas > 1e-4) & (alphas < C-1e-4)])
print('')
print('w = ', w.flatten())
print('')
print('b = ', np.mean(b))
print('')
print("support vector : ", np.array(range(m))[S])


     pcost       dcost       gap    pres   dres
 0:  1.1233e+03 -2.1902e+04  2e+04  2e-12  8e-15
 1:  4.0674e+02 -3.1858e+03  4e+03  6e-13  6e-15
 2: -1.3134e+02 -4.7529e+02  3e+02  3e-13  2e-15
 3: -1.7599e+02 -2.0145e+02  3e+01  2e-13  9e-16
 4: -1.7673e+02 -1.7721e+02  5e-01  4e-13  6e-16
 5: -1.7674e+02 -1.7678e+02  4e-02  3e-13  5e-16
 6: -1.7674e+02 -1.7674e+02  2e-03  3e-13  4e-16
 7: -1.7674e+02 -1.7674e+02  4e-05  2e-14  4e-16
Optimal solution found.
Alphas =  [1.79257312e+00 1.79257312e+00 1.79257311e+00 1.79257312e+00
 1.79257312e+00 1.79257312e+00 1.79257312e+00 1.79257312e+00
 1.79257312e+00 1.79256632e+00 1.79257312e+00 1.79257312e+00
 1.79353230e+00 1.17711994e+00 1.79257312e+00 1.79257312e+00
 1.79257312e+00 1.79257312e+00 1.79257312e+00 1.79257312e+00
 1.74407303e+00 1.79256950e+00 1.79257312e+00 1.79257312e+00
 1.79257312e+00 1.79257312e+00 1.74407303e+00 1.79257276e+00
 1.79257312e+00 1.79258873e+00 1.48827655e+00 1.79304876e+00
 1.79301497e+00 1.79257314e+00 1.79256925e+00 1.79257312e+00
 1.79257312e+00 1.48496977e+00 1.79245816e+00 1.79257313e+00
 1.79257312e+00 1.79257312e+00 1.79257312e+00 1.79154051e+00
 1.79257312e+00 1.79755839e+00 1.79257312e+00 1.79257312e+00
 1.79257312e+00 1.79257312e+00 1.79257312e+00 1.79257309e+00
 1.79257312e+00 1.79245816e+00 1.79257312e+00 1.79257312e+00
 1.79257312e+00 1.79257311e+00 1.79257302e+00 1.79257312e+00
 1.79257303e+00 1.79154368e+00 1.79257312e+00 1.79257312e+00
 1.79256806e+00 1.79257312e+00 1.46044104e+00 1.79257312e+00
 1.79257312e+00 1.79237607e+00 1.79256784e+00 1.79257310e+00
 1.79257312e+00 1.79257312e+00 1.79257309e+00 1.79257311e+00
 1.79257312e+00 1.79257312e+00 1.79257311e+00 1.79257276e+00
 1.79257312e+00 1.79257312e+00 1.79257312e+00 1.79257312e+00
 1.79257312e+00 1.79257312e+00 1.79256922e+00 1.49059469e+00
 1.79257312e+00 1.79257312e+00 1.79257312e+00 1.79257312e+00
 1.79257312e+00 1.79257312e+00 1.79257312e+00 1.79257312e+00
 1.22891792e+00 1.79237607e+00 1.79257312e+00 1.79257312e+00
 1.94260877e-01 1.57338779e-01 2.06854357e-01 2.02158145e-01
 2.07426976e-01 2.06750579e-01 1.00636850e-01 2.06813301e-01
 2.06825450e-01 2.07193025e-01 2.07423984e-01 1.47241141e-01
 2.07426973e-01 2.05310829e-01 2.07426925e-01 2.06304917e-01
 2.07420753e-01 2.07426975e-01 2.00513631e-01 9.61397433e-02
 2.07430835e-01 2.05903293e-01 2.07426951e-01 2.07426976e-01
 1.75762238e-01 2.07426301e-01 2.06808625e-01 2.07322172e-01
 2.07412053e-01 2.07401828e-01 2.07361534e-01 2.04009426e-01
 1.87757113e-01 1.79010026e-01 2.05641578e-01 2.07278304e-01
 2.07426673e-01 2.06176920e-01 2.03705885e-01 2.04075885e-01
 2.06550658e-01 2.07416178e-01 2.07399432e-01 2.07426651e-01
 2.06564684e-01 2.06891969e-01 2.07426596e-01 2.07426976e-01
 2.04883925e-01 2.07426245e-01 2.06483472e-01 2.07426771e-01
 1.98840536e-01 1.67294654e-01 2.07410808e-01 2.07342889e-01
 2.07426961e-01 2.07421842e-01 1.80954702e-01 1.66359204e-01
 2.01072031e-01 1.85260237e-01 2.05812439e-01 2.06541034e-01
 2.07405354e-01 2.07394271e-01 2.07376247e-01 2.06090220e-01
 1.54499380e-01 1.31036320e-01 1.64979954e-01 2.07319402e-01
 2.07426952e-01 2.05409413e-01 2.07290917e-01 2.05759674e-01
 2.07167184e-01 2.07421056e-01 1.17811075e-01 2.07148857e-01
 2.06679906e-01 1.91692248e-01 2.06024521e-01 1.78310592e-01
 2.07424177e-01 6.97419864e-02 1.95292589e-01 1.67886442e-01
 2.06687140e-01 2.07402285e-01 2.07423859e-01 1.89127396e-01
 2.06428527e-01 2.07379160e-01 2.02825342e-01 2.02187077e-01
 2.06479696e-01 2.07422358e-01 2.07214701e-01 2.07425881e-01
 2.07426139e-01 2.07367611e-01 2.07426976e-01 2.07426967e-01
 2.07383572e-01 2.07411132e-01 2.07426579e-01 1.91048700e-01
 2.07068517e-01 2.07426976e-01 1.58402781e-01 2.07426945e-01
 2.07426976e-01 2.07424230e-01 2.06351699e-01 1.38690740e-01
 2.07426960e-01 2.07426972e-01 2.07275532e-01 2.07391939e-01
 1.67365621e-01 1.76557425e-01 2.07423274e-01 2.04790932e-01
 1.71881317e-01 2.07421983e-01 2.06877025e-01 2.07426976e-01
 1.88209562e-01 2.07085218e-01 2.07405577e-01 2.02448049e-01
 2.07343035e-01 2.07426963e-01 1.17175904e-01 1.17799636e-01
 2.07426971e-01 2.05363202e-01 2.07409677e-01 1.97768159e-01
 2.04158060e-01 2.06797653e-01 1.72199510e-01 2.07095358e-01
 1.73378355e-01 2.07111553e-01 7.55342879e-02 1.44119506e-01
 2.07426975e-01 2.07274648e-01 2.01860743e-01 2.07417933e-01
 2.07338341e-01 2.05956902e-01 2.06853811e-01 1.70122597e-01
 2.04236129e-01 2.05324137e-01 2.07272697e-01 2.07178579e-01
 2.07193482e-01 1.13746500e-01 2.89384930e-04 2.07426566e-01
 2.07421898e-01 2.06641767e-01 2.05142637e-01 2.07295124e-01
 2.07424286e-01 2.07249452e-01 1.38897822e-01 2.04622922e-01
 7.56932132e-02 2.07287201e-01 2.07426976e-01 2.07422351e-01
 2.07426976e-01 2.07426974e-01 2.07426793e-01 2.05532223e-01
 2.07415267e-01 2.07426267e-01 2.06898377e-01 2.07426976e-01
 2.07426942e-01 2.07426976e-01 2.03373077e-01 8.22750212e-03
 2.07407554e-01 2.07426973e-01 1.67921317e-01 2.07412409e-01
 2.07338105e-01 2.07415129e-01 2.07274232e-01 2.07426976e-01
 2.07426975e-01 1.32099899e-01 2.07347175e-01 2.07385941e-01
 2.07144471e-01 2.07409841e-01 2.03851741e-01 2.07426976e-01
 2.07373337e-01 2.07426976e-01 2.06893871e-01 1.83157192e-01
 2.07402876e-01 2.05658944e-01 2.07426976e-01 2.06998083e-01
 2.05574685e-01 2.07426976e-01 2.02980570e-01 2.06968871e-01
 2.07426972e-01 2.07121022e-01 2.07426976e-01 2.04952184e-01
 2.07426939e-01 1.94790358e-01 2.06249522e-01 1.96378909e-01
 1.73989560e-01 1.66427579e-01 1.28494180e-01 2.07423940e-01
 2.06138951e-01 1.51399676e-01 2.02249473e-01 8.08907536e-02
 2.07426965e-01 2.05912822e-01 2.07426976e-01 2.07426871e-01
 2.07352194e-01 2.03796750e-01 2.07273446e-01 2.07426976e-01
 2.04002550e-01 2.07426023e-01 9.34392060e-02 2.07426396e-01
 1.13367069e-01 2.07414089e-01 2.07426770e-01 2.07199496e-01
 1.14243322e-01 2.04534926e-01 2.07426959e-01 2.04492868e-01
 2.07426976e-01 2.06259150e-01 2.07352496e-01 2.07420266e-01
 2.07319221e-01 2.07422595e-01 2.07399836e-01 2.07420017e-01
 7.58227528e-02 2.07205610e-01 2.07426784e-01 2.06913903e-01
 1.64284810e-01 2.07422782e-01 1.80632889e-01 1.43505728e-01
 2.04510924e-01 2.06672245e-01 2.07426976e-01 2.07403342e-01
 2.07426976e-01 1.43060797e-01 2.00372824e-01 2.07424398e-01
 2.05414243e-01 2.10631361e-01 2.05658396e-01 1.98574336e-01
 2.06393457e-01 2.07242606e-01 2.07423185e-01 1.83243190e-01
 2.07426968e-01 2.06183968e-01 2.07426829e-01 2.07426967e-01
 6.16757380e-02 2.06564059e-01 2.07425261e-01 1.99076636e-01
 2.07324677e-01 2.07395419e-01 2.09386621e-01 1.99588797e-01
 1.88364973e-01 2.06485970e-01 2.05090706e-01 2.00218195e-01
 2.07161651e-01 2.07420266e-01 2.00402114e-01 2.07411706e-01
 2.06671964e-01 2.07425247e-01 2.11075920e-01 2.07383361e-01
 1.85611811e-01 2.07426283e-01 2.07410336e-01 2.07209473e-01
 2.04070187e-01 1.32874174e-01 2.05147444e-01 2.02247178e-01
 2.07340564e-01 2.07422380e-01 2.07426823e-01 2.01174744e-01
 2.07426973e-01 1.44817628e-01 2.06718871e-01 6.65832503e-02
 2.07379420e-01 2.07401492e-01 1.98331616e-01 2.07179622e-01
 1.97485206e-01 2.07120895e-01 2.07426961e-01 2.07409036e-01
 2.03891782e-01 2.07347208e-01 2.07426871e-01 2.07426068e-01
 1.90122315e-01 2.07424571e-01 1.99470537e-01 2.07330149e-01
 2.07426976e-01 2.01992650e-01 2.06403276e-01 2.07426975e-01
 2.04751356e-01 2.07426976e-01 1.95920720e-01 2.07426074e-01
 1.98777017e-01 1.46921008e-01 2.05433865e-01 2.07171995e-01
 1.50372980e-01 1.08211048e-01 2.07425624e-01 2.07426934e-01
 2.18793286e-01 2.07225386e-01 2.07047765e-01 2.07426976e-01
 2.07423754e-01 2.07426975e-01 2.07195325e-01 2.07422030e-01
 2.05497505e-01 1.97770201e-01 1.95915495e-01 2.07421839e-01
 2.06991617e-01 2.03098481e-01 2.07426976e-01 1.91793893e-01
 1.29778846e-01 2.07426855e-01 2.07426976e-01 2.07426642e-01
 1.78510597e-01 2.07099097e-01 2.04508932e-01 2.06773392e-01
 1.94646489e-01 2.02525897e-01 2.05397253e-01 1.86726244e-01
 1.15887790e-01 2.04167583e-01 2.06513514e-01 2.06747815e-01
 2.07251664e-01 2.07413721e-01 2.06345006e-01 2.07426936e-01
 2.06861248e-01 2.07426975e-01 1.91875817e-01 2.06861031e-01
 2.07192539e-01 2.05215066e-01 2.07090382e-01 2.07425985e-01
 2.07291464e-01 1.84566713e-01 2.07420165e-01 2.02040477e-01
 2.07426892e-01 1.76899035e-01 2.07420822e-01 2.07426976e-01
 2.07426976e-01 2.07426976e-01 2.06155694e-01 2.07425749e-01
 2.07241653e-01 2.07426976e-01 2.07426975e-01 2.07342391e-01
 2.07426976e-01 1.64652128e-01 1.92939610e-01 1.98112840e-01
 2.06549113e-01 2.07426307e-01 2.07531176e-01 2.06164471e-01
 2.05032501e-01 2.07411944e-01 2.07246945e-01 1.86014375e-01
 2.07281247e-01 1.61528804e-01 2.07035833e-01 1.78545951e-01
 2.07426604e-01 2.02865384e-01 2.07426976e-01 2.07426976e-01
 2.07316799e-01 2.07425652e-01 2.07426976e-01 2.06882398e-01
 2.07289195e-01 2.07381440e-01 2.07180074e-01 2.07426960e-01
 1.09665144e-02 2.07426976e-01 2.07381368e-01 2.05896748e-01
 2.06958959e-01 2.06391072e-01 2.07423215e-01 2.07424395e-01
 2.07385565e-01 1.79609158e-01 2.05181507e-01 2.05925808e-01
 2.07426976e-01 2.07418929e-01 1.79544023e-01 2.07426289e-01
 1.17487541e-01 2.07323409e-01 2.07426922e-01 2.05177622e-01
 2.07426976e-01 2.07305694e-01 2.07426976e-01 1.41273675e-01
 2.07338565e-01 1.90124446e-01 2.07374668e-01 2.07426972e-01
 2.07426438e-01 2.07321981e-01 2.07426976e-01 2.07426921e-01
 2.07426976e-01 2.07426916e-01 2.07426975e-01 2.07424579e-01
 2.04610313e-01 1.76738797e-01 2.05544717e-01 2.07324158e-01
 2.07426697e-01 2.07426971e-01 1.97150543e-01 2.06057093e-01
 2.07426976e-01 1.89976562e-01 2.07304216e-01 1.58065495e-01
 2.07426728e-01 1.52270548e-01 2.07426976e-01 2.01546651e-01
 2.07426957e-01 2.06800032e-01 2.03907718e-01 2.07426976e-01
 2.07426971e-01 2.02898851e-01 2.07336894e-01 2.07426976e-01
 2.07079309e-01 2.03965508e-01 2.07426976e-01 1.30615949e-01
 2.06726057e-01 2.05682159e-01 2.07367957e-01 2.07416774e-01
 2.06974544e-01 2.07218583e-01 2.07335501e-01 2.05525557e-01
 1.89423810e-01 2.07426894e-01 2.07425356e-01 2.07424456e-01
 2.07426976e-01 2.07350961e-01 1.94726744e-01 1.97904447e-01
 2.07421611e-01 2.07425653e-01 2.05670256e-01 2.07425437e-01
 2.04225605e-01 2.07330764e-01 2.07301860e-01 2.07422400e-01
 1.65238081e-01 2.07426976e-01 1.94517019e-01 2.07382142e-01
 2.07014623e-01 2.04645657e-01 2.07426968e-01 1.94234120e-01
 2.06041247e-01 1.86759308e-01 1.90882644e-01 2.07423674e-01
 2.07426976e-01 2.07389432e-01 2.07421482e-01 1.04060095e-01
 1.85990442e-01 2.06647787e-01 2.07426902e-01 1.79969675e-01
 1.57658368e-01 2.07426975e-01 1.99805431e-01 2.06910718e-01
 2.04673561e-01 2.07426937e-01 2.07426976e-01 2.07426976e-01
 2.07426846e-01 2.00689508e-01 1.74918222e-01 2.02332885e-01
 2.07313455e-01 2.07426955e-01 1.97604872e-01 1.99180879e-01
 1.52231200e-01 2.06463459e-01 2.07426976e-01 2.07423384e-01
 2.07426911e-01 2.05680776e-01 2.06816825e-01 2.07412049e-01
 1.99384993e-01 2.00001814e-01 2.04248654e-01 2.07395748e-01
 1.65022539e-01 2.07426515e-01 1.88975444e-01 2.07730172e-01
 2.05054074e-01 2.07426976e-01 2.07426686e-01 1.78314444e-01
 2.04500666e-01 2.06686793e-01 2.07426166e-01 2.06766514e-01
 2.07425307e-01 2.03856822e-01 2.07426814e-01 2.07426976e-01
 2.07426976e-01 2.07392575e-01 1.43249462e-01 2.07426976e-01
 1.99429989e-01 2.06053179e-01 2.07426960e-01 2.07405808e-01
 2.66999729e-02 2.07426394e-01 2.07423741e-01 2.07425165e-01
 1.43731526e-01 2.07426976e-01 2.07426975e-01 2.07426964e-01
 2.06680985e-01 2.07426964e-01 2.07426972e-01 2.07426627e-01
 1.57629185e-01 2.03904184e-01 2.07426554e-01 2.07426969e-01
 2.07426975e-01 2.07426975e-01 2.07426926e-01 2.04401277e-01
 2.07426976e-01 2.07135880e-01 2.07423480e-01 9.05327888e-02
 1.86774801e-01 2.05428956e-01 2.06289214e-01 1.76878129e-01
 1.27507634e-01 2.07278960e-01 1.94572221e-01 2.07264928e-01
 2.05221399e-01 2.07426858e-01 2.06828964e-01 7.55612786e-02
 2.07387326e-01 2.07426706e-01 2.07424188e-01 2.07425784e-01
 1.31232283e-01 2.07426691e-01 2.07421009e-01 2.07426976e-01
 2.07426976e-01 2.07388453e-01 2.07332911e-01 2.07426959e-01
 2.07075110e-01 2.07426609e-01 2.07022963e-01 2.07426954e-01
 2.07395938e-01 1.79608339e-01 1.05157940e-01 2.06369388e-01
 2.04292148e-01 5.96596752e-02 2.07426976e-01 2.07208115e-01
 2.07425301e-01 2.07426975e-01 2.04804983e-01 1.86231906e-01
 1.27873225e-01 1.98539484e-01 2.07426976e-01 2.07426854e-01
 2.07244499e-01 2.07246381e-01 2.06455876e-01 2.07425915e-01
 2.07425331e-01 1.31580058e-01 2.07227244e-01 2.07426727e-01
 2.07426976e-01 2.07426976e-01 2.02776444e-01 2.05019776e-01
 2.07251229e-01 2.07426973e-01 1.62392478e-01 2.07257720e-01
 2.07424877e-01 2.06839276e-01 1.63231325e-01 2.07426976e-01
 2.06845638e-01 2.07426101e-01 2.06486433e-01 2.07226305e-01
 2.07423817e-01 2.06119217e-01 2.07405690e-01 1.97130337e-01
 2.07426967e-01 2.07009947e-01 2.06245339e-01 2.07398529e-01
 2.05592373e-01 1.35203254e-01 2.07248576e-01 2.07426976e-01
 2.07198259e-01 2.07426933e-01 1.23434674e-01 2.07307120e-01
 2.07426976e-01 2.07426571e-01 2.06805037e-01 2.07378176e-01
 1.50461770e-01 2.06538619e-01 2.07384436e-01 2.07426912e-01
 1.96360141e-01 1.35940488e-01 2.07191142e-01 1.33901032e-01
 2.07426069e-01 2.07426976e-01 2.07424783e-01 2.07268740e-01
 2.07418482e-01 2.07416791e-01 2.07426373e-01 2.06521681e-01
 1.70338370e-01 2.07422149e-01 1.97527802e-01 2.07375339e-01
 2.07272150e-01 2.06881007e-01 1.45437617e-01 2.07426289e-01
 2.07424631e-01 2.02845953e-01 2.06802663e-01 2.04311115e-01
 2.07424811e-01 2.04528322e-01 2.06086690e-01 2.07424166e-01
 2.07187956e-01 2.07420817e-01 2.05916446e-01 2.07426936e-01
 2.07426976e-01 2.07426028e-01 2.05613321e-01 2.07426976e-01
 2.01624067e-01 1.97234815e-01 2.07411269e-01 2.02384804e-01
 1.13654922e-01 2.01147636e-01 2.05741563e-01 2.02952289e-01
 2.07396398e-01 2.03333398e-01 2.07426454e-01 1.99681386e-01
 2.05563257e-01 2.07426976e-01 2.07387986e-01 2.07426455e-01
 2.06584662e-01 2.02105180e-01 1.08971488e-01 1.70696418e-01
 2.07426976e-01 2.07426976e-01 2.07426244e-01 1.95064636e-01
 2.07425872e-01 2.06483589e-01 2.07426974e-01 2.07423620e-01
 2.04101104e-01 1.56789578e-01 2.07426936e-01 2.07423683e-01
 1.83688805e-01 2.06536731e-01 2.04655760e-01 2.07426976e-01
 1.23434232e-01 2.06279791e-01 2.06097816e-01 2.06243974e-01
 2.07415973e-01 2.07426976e-01 2.07426967e-01 2.05422579e-01
 2.04443364e-01 2.07424342e-01 1.91161053e-01 2.07426976e-01
 1.79543447e-01 2.07426976e-01 2.06745198e-01 2.00308895e-01
 2.07283581e-01 2.07421359e-01 1.11193729e-01 2.07426976e-01
 2.07426974e-01 1.85985926e-01 2.05586699e-01 2.07426976e-01
 2.06241403e-01 2.06712474e-01 2.07422248e-01 2.07395210e-01
 2.07382443e-01 2.02354504e-01 2.07426924e-01 2.07426903e-01
 2.07426122e-01 2.07426912e-01 2.06289192e-01 2.07426976e-01
 2.07426964e-01 2.07426975e-01 2.07426867e-01 1.98949288e-01
 2.07426965e-01 2.07153242e-01 2.07284094e-01 2.07423329e-01
 2.03270619e-01 2.07400644e-01 1.37689092e-01 2.00237317e-01
 1.90661702e-01 2.07425619e-01 1.99525528e-01 2.05400678e-01
 2.03707510e-01 2.04254439e-01 2.02040863e-01 2.07205170e-01
 1.22986226e-01 1.98864773e-01 2.07277307e-01 2.07236469e-01
 2.07425935e-01 2.02973219e-01 2.07411284e-01 1.94104046e-01
 1.47001217e-01 2.07029417e-01 2.07426976e-01 2.06928812e-01
 2.03334184e-01 2.02123502e-01 1.63716212e-01 2.07357485e-01
 2.07426976e-01 1.73121465e-01 2.07264847e-01 2.05602816e-01
 1.85254950e-01 2.07426155e-01 2.07422981e-01 2.07376564e-01
 2.02390877e-01 2.07360821e-01 2.07262227e-01 2.07426749e-01
 1.95740606e-01 2.07421142e-01 2.07426976e-01 2.07271951e-01
 1.83067576e-01 2.07398469e-01 2.07426973e-01 1.71683642e-01
 2.03470961e-01 2.07271594e-01 2.00719980e-01 2.07426976e-01
 1.97869721e-01 1.95438272e-01 1.65039104e-01 2.07426976e-01
 1.92255656e-01 2.07313566e-01 2.06769605e-01 2.00275089e-01
 1.93904700e-01 1.72779877e-01 2.07217566e-01]

w =  [ -20.18676701 -240.14832418  230.32058373 -353.60683227  375.82698525
 -174.77641435 -147.64948471 -293.07395374   85.1922569  -294.62720709
 -379.18157477  385.54472168 -427.92765205  -44.36418703 -467.46292388
   -4.47906698 -369.90094812 -376.57314699 -277.98990279   99.90986887
   13.63424093  145.44219878  -25.68515181  -19.22964807  -33.18816907
   -5.80714284    7.81903048   45.38315421   41.02164717   22.70585013]

b =  -0.7925630472941848

support vector :  [  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17
  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35
  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53
  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71
  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89
  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107
 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
 576 577 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
 991 992 993 994 995 996 997 998 999]
from sklearn.svm import SVC
clf = SVC(C = 10, kernel = 'rbf', gamma=2, tol = 1e-4)
clf.fit(X, y.ravel()) 

print('Coefficients of the support vector in the decision function = ')
print(np.abs(clf.dual_coef_))
print('')
print('b = ',clf.intercept_)
print('')
print('support vector = ', clf.support_)
Coefficients of the support vector in the decision function = 
[[0.19427572 0.15734218 0.20686856 0.20215737 0.20743168 0.20675751
  0.10065097 0.20681694 0.20683949 0.20720004 0.20738255 0.14721231
  0.20743128 0.20531684 0.20738893 0.20631745 0.20742473 0.20743935
  0.20051885 0.09617714 0.20742985 0.20591031 0.20743316 0.20742716
  0.17575769 0.20742808 0.20681241 0.20733182 0.20741603 0.2074462
  0.20736915 0.20401339 0.1877162  0.17904257 0.20564435 0.20726029
  0.20743951 0.20619093 0.20368087 0.20409158 0.20655612 0.20737539
  0.20735413 0.20738973 0.20657057 0.20689556 0.20742759 0.20744131
  0.20489204 0.20742798 0.20648072 0.20743166 0.19880382 0.16729958
  0.20740992 0.20731707 0.20743065 0.20743448 0.18095954 0.16636637
  0.20107325 0.18527193 0.20578218 0.20651167 0.20741051 0.20739117
  0.20737985 0.20610321 0.15450253 0.13099134 0.16497422 0.20732516
  0.20746328 0.20540958 0.20725401 0.20576531 0.20716769 0.207434
  0.11787092 0.20715367 0.20668463 0.19166303 0.20603827 0.17831758
  0.20742984 0.07021285 0.19529932 0.16788023 0.20670123 0.20741733
  0.20742354 0.18913514 0.20639017 0.2073795  0.20278572 0.20219554
  0.2064453  0.20743647 0.20722013 0.20742965 0.20743191 0.20736892
  0.20744086 0.20740304 0.20739789 0.20741756 0.20743031 0.19100303
  0.2070681  0.20743362 0.15846509 0.20743296 0.20743128 0.2074299
  0.20635692 0.13867073 0.20742609 0.20743245 0.20728078 0.2073989
  0.16731887 0.17651064 0.20747065 0.20479833 0.171918   0.20742776
  0.20688049 0.20743071 0.18821977 0.207099   0.20740526 0.20246321
  0.20730447 0.20738673 0.11715814 0.11772264 0.20739005 0.20541251
  0.20736748 0.19777709 0.20416006 0.20680344 0.17223805 0.20708198
  0.17338171 0.20711497 0.07560496 0.14411287 0.20743084 0.20727414
  0.2018745  0.20742359 0.20734265 0.20596256 0.2068677  0.17011455
  0.2041958  0.2053767  0.20728463 0.2071914  0.20719433 0.11373797
  0.20742715 0.2073839  0.20664907 0.20514708 0.20730996 0.20742557
  0.20725468 0.13890746 0.20462188 0.07568524 0.20730124 0.20742587
  0.20743404 0.20738979 0.20742664 0.20743192 0.20554422 0.20740409
  0.20743297 0.20690608 0.2074326  0.2074398  0.2074308  0.20337859
  0.0044639  0.20740921 0.20743443 0.16790408 0.20741573 0.20734473
  0.20745188 0.20728125 0.20743991 0.20743111 0.13210691 0.20735124
  0.20738721 0.2071483  0.20742333 0.20380641 0.20742494 0.20737218
  0.20743094 0.206899   0.18312405 0.20740693 0.20566415 0.20742656
  0.20695921 0.2055765  0.20743231 0.20298563 0.20696961 0.2074323
  0.20713093 0.20739549 0.2049583  0.20743441 0.19479364 0.20621083
  0.19639495 0.17396268 0.16644264 0.12848771 0.20742377 0.20609649
  0.15142609 0.20226219 0.08091001 0.20744034 0.20591371 0.2074303
  0.20743971 0.20736066 0.20380269 0.2072659  0.20742365 0.2039982
  0.20742734 0.09352387 0.20743102 0.11343357 0.20737409 0.20743161
  0.20720363 0.11418252 0.20451269 0.20738872 0.20450265 0.20738788
  0.20626481 0.20735639 0.20741913 0.20732589 0.20742722 0.20740735
  0.20742579 0.07713075 0.20721418 0.20743103 0.20691528 0.16429494
  0.20742358 0.18063951 0.14369457 0.20448191 0.2066779  0.20742591
  0.20741067 0.20743087 0.14306064 0.20036855 0.20742323 0.20541109
  0.21058691 0.20565875 0.19857925 0.20639525 0.20721217 0.20743723
  0.18322227 0.20742505 0.20623215 0.20743193 0.20738605 0.06172465
  0.20653682 0.20742948 0.19908798 0.20733008 0.20735825 0.20938513
  0.19959663 0.18836901 0.20649894 0.20509767 0.20022286 0.20717139
  0.20745659 0.20041115 0.20738376 0.20668579 0.20742044 0.21107746
  0.20738731 0.18561726 0.20744068 0.20741704 0.20721481 0.20408297
  0.13292813 0.20515203 0.20225136 0.20734624 0.20743575 0.20743189
  0.2011778  0.2073929  0.14483335 0.20672578 0.066635   0.20739316
  0.20740524 0.1983437  0.20718377 0.19748254 0.20717252 0.2074318
  0.2074104  0.20390533 0.20735097 0.20743273 0.20738345 0.19013035
  0.20743168 0.19946299 0.20733136 0.20743428 0.20199385 0.20639465
  0.20742875 0.2047468  0.20742578 0.19592635 0.20743809 0.19877975
  0.14696428 0.20542625 0.20717929 0.15039311 0.10817906 0.20739236
  0.20743969 0.21880752 0.20724261 0.20704943 0.20743146 0.20742295
  0.20747934 0.20720108 0.20742783 0.20550413 0.19777662 0.19592361
  0.20742356 0.20699579 0.20305251 0.2074012  0.19176702 0.12986659
  0.20743228 0.20743578 0.20743194 0.17849539 0.20711052 0.20450901
  0.20678423 0.19465468 0.20253068 0.20540232 0.1867358  0.11584783
  0.20413777 0.20651981 0.2067526  0.20722515 0.2074134  0.20635119
  0.20742667 0.20686854 0.20743643 0.19188422 0.20686594 0.20715304
  0.20522216 0.20709564 0.20743141 0.20729005 0.18457371 0.20742188
  0.20205018 0.20742606 0.17692852 0.2074219  0.20742625 0.20743105
  0.207441   0.20611652 0.20738766 0.20724007 0.20738225 0.20743089
  0.20734902 0.20738634 0.16463179 0.19290227 0.19808257 0.20651303
  0.20743376 0.20753163 0.20616665 0.20503742 0.20741085 0.20725261
  0.18602034 0.20728859 0.16153067 0.20704904 0.17850811 0.20739093
  0.20286862 0.20743374 0.20738841 0.20732125 0.2073921  0.20743049
  0.2068884  0.20729541 0.20739279 0.20718542 0.2074312  0.00938444
  0.20738369 0.20738244 0.2058668  0.20695975 0.20639272 0.20743603
  0.20743773 0.20738932 0.17957891 0.20518664 0.20593327 0.20743261
  0.20743182 0.17955183 0.20738945 0.11745496 0.2073305  0.20739367
  0.2051899  0.20742574 0.20730908 0.20745815 0.14120766 0.2073398
  0.19013425 0.20738256 0.20742868 0.20743378 0.20729152 0.20743935
  0.20743978 0.20743505 0.20742596 0.20743146 0.2074263  0.20460177
  0.17673433 0.20555266 0.20733671 0.20743219 0.20743246 0.19715575
  0.20606281 0.20743215 0.18998244 0.2073171  0.1581     0.20742849
  0.15228653 0.20739178 0.20156172 0.20743979 0.20679895 0.20390719
  0.20742827 0.20743457 0.20290248 0.20733705 0.20742626 0.20708668
  0.20397047 0.20743105 0.1305964  0.20668213 0.20569002 0.20737598
  0.20742243 0.20697415 0.20721851 0.20734083 0.20549438 0.1894333
  0.20742728 0.20742442 0.20743709 0.20740154 0.20730697 0.1946947
  0.1979096  0.20744431 0.20737909 0.20563251 0.20743094 0.20423111
  0.2073355  0.20730058 0.20742956 0.16523764 0.20738976 0.19450185
  0.20738573 0.2069736  0.20461204 0.20738685 0.19420101 0.20604688
  0.18676618 0.1908941  0.20737826 0.20738976 0.20739437 0.20743113
  0.10403112 0.18599997 0.20665139 0.2074341  0.17997993 0.15760293
  0.20743992 0.19981395 0.20692169 0.20468685 0.20743056 0.20740154
  0.20743401 0.20743445 0.20070312 0.17492    0.2023381  0.20732057
  0.20742662 0.19761954 0.19918905 0.15220292 0.20646885 0.20743094
  0.20743676 0.20743068 0.20567921 0.2068306  0.20741611 0.199399
  0.19996713 0.20426253 0.20740152 0.16505059 0.20738379 0.18897945
  0.207736   0.20502022 0.2074198  0.2074244  0.17833201 0.20454092
  0.20668779 0.20743004 0.20681928 0.20743868 0.20382928 0.20743418
  0.20743122 0.20743373 0.20735378 0.14579096 0.20743401 0.19944259
  0.20605928 0.20742633 0.20741168 0.02667927 0.20738576 0.20743118
  0.20742904 0.14374012 0.2074198  0.20742873 0.20738771 0.20668656
  0.20743407 0.20742637 0.2074307  0.15764139 0.2039157  0.20738466
  0.20743108 0.2074261  0.20746353 0.20738303 0.20440281 0.2074318
  0.20713657 0.20742955 0.09051151 0.18673723 0.20543347 0.20628922
  0.17686475 0.12757543 0.20731182 0.19453688 0.20727871 0.20518115
  0.20742863 0.20685553 0.07558359 0.20738725 0.20743223 0.20739625
  0.20742465 0.13125239 0.20743203 0.20742511 0.20744036 0.20739318
  0.20739618 0.20729283 0.20746032 0.20707682 0.20743966 0.20703597
  0.20742947 0.20740888 0.17958215 0.10521115 0.20636944 0.2043012
  0.05961702 0.20743458 0.20723091 0.2073793  0.20743269 0.20481917
  0.18624325 0.12788496 0.1985404  0.20739517 0.20743278 0.20724631
  0.2072596  0.20646071 0.20742478 0.20740227 0.13157376 0.20723249
  0.20741559 0.20744018 0.207441   0.20277467 0.20497575 0.20725062
  0.20744004 0.16235855 0.20727089 0.20743239 0.20684377 0.1632368
  0.20743128 0.20685115 0.20743144 0.20649063 0.20718354 0.20746618
  0.20607353 0.20741132 0.19714504 0.20738441 0.20700355 0.20625273
  0.20740242 0.20559863 0.13518079 0.20725434 0.20745815 0.20720526
  0.2074339  0.12339703 0.20726083 0.20744087 0.20743175 0.20684291
  0.20737979 0.15048379 0.20653729 0.20738962 0.20744173 0.1963617
  0.13585555 0.20714556 0.13387435 0.20743343 0.20743265 0.20742874
  0.20727446 0.20742378 0.20742085 0.20743839 0.20650149 0.1703536
  0.20742934 0.1975379  0.20738264 0.20727947 0.2068848  0.14543311
  0.20743176 0.20743127 0.20286197 0.20685544 0.20431495 0.20742877
  0.20452271 0.20610068 0.20742521 0.20719461 0.20743382 0.20592146
  0.20742661 0.20742605 0.20746265 0.20561114 0.20743962 0.20157781
  0.19723793 0.2073729  0.20239831 0.11451379 0.20110238 0.20574678
  0.20291973 0.20739305 0.20336836 0.20742764 0.19968498 0.20556737
  0.20740651 0.20739176 0.20742637 0.20658595 0.20206837 0.10898484
  0.17067358 0.20738606 0.20738859 0.20737968 0.19502779 0.20738662
  0.20648734 0.20748014 0.2074351  0.20410247 0.15682219 0.20742812
  0.20747265 0.18370009 0.20650265 0.20470634 0.20738313 0.12349673
  0.20629496 0.20610094 0.20620919 0.20741734 0.20743128 0.20742815
  0.20542838 0.20445639 0.2074234  0.19117662 0.20743215 0.17955309
  0.20742768 0.20675674 0.20035512 0.20728866 0.20742606 0.11141255
  0.2073902  0.20743309 0.1859914  0.20558829 0.20743247 0.20624704
  0.20671951 0.20742359 0.20740844 0.20739655 0.20237572 0.2074308
  0.20742817 0.20743932 0.20743225 0.20629543 0.20743141 0.20743923
  0.20742788 0.20744061 0.19896133 0.20743215 0.20715275 0.20729686
  0.20742826 0.20326596 0.20739983 0.13766786 0.20027378 0.1906687
  0.20743843 0.19952483 0.20541435 0.20368544 0.20426176 0.20207326
  0.20717199 0.12291511 0.19886663 0.2072868  0.20724223 0.20738532
  0.20297501 0.20741647 0.19411178 0.14701423 0.20703545 0.20738874
  0.2069307  0.20334021 0.20212269 0.16375042 0.20737188 0.20743386
  0.17316461 0.20726567 0.20561637 0.18526912 0.20743126 0.20742185
  0.20737579 0.20234691 0.20737455 0.20731499 0.2074258  0.19569566
  0.20746104 0.20743937 0.20727757 0.18307296 0.20741074 0.20742665
  0.17169245 0.20347463 0.20727091 0.20068993 0.2074334  0.19787976
  0.19544577 0.16503822 0.20743121 0.19213377 0.20731273 0.20678328
  0.20028059 0.1938646  0.17276456 0.20722987 1.79256939 1.79256329
  1.79256754 1.79257409 1.79256861 1.79256782 1.79258091 1.79257222
  1.79258376 1.79256144 1.79260906 1.79257063 1.79352141 1.17710246
  1.7925661  1.79257435 1.79258904 1.79255868 1.79256897 1.79257335
  1.74411096 1.79255676 1.7925746  1.79257375 1.79256739 1.79256738
  1.74407628 1.79257148 1.79256566 1.79258327 1.48830748 1.79304915
  1.79301098 1.79257053 1.79256526 1.79256808 1.79255868 1.48500043
  1.79245079 1.79256966 1.79255798 1.79255995 1.79256914 1.79153654
  1.79257137 1.79758755 1.79253966 1.79255976 1.79256836 1.79257131
  1.79261522 1.79255981 1.79256907 1.79240485 1.79256941 1.79256623
  1.79257216 1.79256783 1.79260134 1.7925643  1.79257734 1.79154265
  1.79256731 1.79255073 1.79256182 1.79256657 1.46045705 1.79257203
  1.79255909 1.79237054 1.792601   1.7925635  1.79261818 1.79261687
  1.79256022 1.79255891 1.79257248 1.79257352 1.79256765 1.79255878
  1.79256574 1.79256534 1.79256809 1.79255913 1.79256009 1.79257124
  1.79255563 1.49058704 1.79256168 1.79260144 1.79257203 1.79257437
  1.79256053 1.79257214 1.79261818 1.79256538 1.22894188 1.79241597
  1.79261491 1.79256009]]

b =  [-0.79257296]

support vector =  [100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
 569 570 571 572 573 574 575 576 577 579 580 581 582 583 584 585 586 587
 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999   0   1
   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37
  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55
  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73
  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91
  92  93  94  95  96  97  98  99]
pred_sol = np.sign(np.sum(Kernel_(X, X, params=2, type_ = 'rbf')* y * alphas , axis = 0).reshape(-1,1) + b[0])

np.sum(clf.predict(X) - pred_sol.flatten())
0.0
  • 차이가 존재하지 않는다!

해당 모델의 Performance 확인

precision_recall(Convolution(pred_sol,y))
(1.0, 1.0)

RBF의 모델이 Linear 모델보다 더 좋은 성능을 보여주었다. 하지만 RBF 모델은 train dataset에 overfitting이 될 가능성이 매우 높기 대문에 주의해야한다. gamma의 값이 작을 수록 margin의 크기가 커지므로 overfitting으로부터 벗어날 수 있다.